Alkaloids Derived from Tryptophan : Harmine and Related Alkaloids, T. D. Nikam et al., 2013

Alkaloids Derived from Tryptophan : Harmine and Related Alkaloids

T. D. Nikam, K. M. Nitnaware, and M. L. Ahire

chapter 19, in K.G. Ramawat, J.M. Merillon (eds.), Natural Products,

# Springer-Verlag, Berlin Heidelberg, 2013

Doi : 10.1007/978-3-642-22144-6_20

 

Contents

1 Synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
3 Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
4 Phytochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 555
4.1 Physicochemical Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
4.2 Chemical Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
4.3 Extraction, Isolation, and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
5 Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . 562
6 Chemical Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 563
7 Biological Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . 563
7.1 Interaction with DNA and RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
7.2 Interaction with Enzymatic Systems and Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
7.3 Neurotoxic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
7.4 Antitumor Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 566
7.5 Antiviral Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
7.6 Antimicrobial Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 567
7.7 Antiparasitic Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
7.8 Antithrombotic Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 567
7.9 Antioxidant Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
7.10 Antiplasmodial Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
7.11 Other Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
8 In Vitro Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . 568
9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 569

Abstract

Over 140 beta-carboline (Harmala) alkaloids are detected in bacteria, algae, fungi, various plant groups, food products, alcoholic beverages, tobacco smoke, marine bryozoa, insects, and animal tissue including human. Some of these alkaloids and their derivatives are synthesized chemically. Several natural and chemically formed alkaloids are biologically active, and they can be used as potent pharmaceutical drug for anticancer therapy, angiogenesis, Alzheimer’s, free radical scavenger, Leishmania, and viruses Herpes, Influenza, Polio, and HIV.

Keywords : Angiogenic • antitumor • b-carboline • harmala alkaloids • harmine

 

2 Introduction

b-carboline alkaloids are heterocyclic amines with a 9-H-pyrido[3,4,b] indole structure derived from amino acid tryptophan. Initially, they have been isolated from plant Peganum harmala L. (Syrian Rue) and are also known as harmala alkaloids. They are active constituents in hallucinogenic plants and have a long tradition in ethnopharmacology. Since then, they have been reported in variety of plant groups, fungi, microorganisms, and in animal tissue including human beings [1–3]. More than 140 different types of b-carbolines are reported so far in plant and animal system [4, 5]. Norharman, harmane, and harmine are also known as mammalian indole alkaloids because they are endogenously produced in human and animal tissues as a product of secondary metabolism [6]. These compounds are also found in some medicinal plants [7]. During food production, processing, and storage, the chemical condensation between indoleamines and aldehydes or keto acids occurs naturally and results in formation of b-carbolines. Their presence is noted in well-cooked meat and fish and also in alcoholic beverages, tobacco smoke, and marijuana smoke [8]. They possess diverse biological properties due to their capability to bind to benzodiazepine or imidazoline receptors, such as hallucinogenic, tremorogenic, hypotensive or cardiovascular actions, and psychotropic properties.

(…)

Alkaloids_Derived_from_Tryptophan_Harmin